

Department of Electrical and Electronics

Number of programmes where syllabus revision was carried out

SL. NO.	COURSE CODE	COURSE OFFERED
1	SEEA1101	Electrical Technology
2	SEEA1102	Electrical Technology
3	SEEA2101	Electrical Engineering Lab
4	SEEA2102	Electrical Engineering Lab

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY

SCHOOL OF ELECTRICAL AND ELECTRONICS

SEEA1101		L	Т	Ρ	Credits	Total Marks
	ELECTRICAL TECHNOLOGY	3	*	0	3	100
COURSE OBJECTIV To understand To study the f To learn the p	FS I and analyze the magnetic circuit. Fundamental principle of electrical machines using the concepts of electro rinciple of operation and performance characteristics of D.C/A.C. Machines	-mech and T	nanical (ransform	energy ners.	conversion.	
UNIT 1 Definition of MMF, F Electromagnetic Ind inductance - Analogy UNIT 2	MAGNETIC CIRCUITS 'lux and Reluctance - Leakage Factor - Reluctances in Series and Parall uction - Fleming's Rule - Lenz's Law - Faraday's laws - statically and c y of Electric and Magnetic. DC MACHINES	el (Se lynam	ries an ically ir	d Para nduced	llel Magnetic EMF - Self a	8 Hrs Circuits) - nd mutual 10 Hr
Construction, Principl DC Motor - Torque - UNIT 3 Constructional Deta Loaded Transforme Transformer.	es of operation of DC Machines - Types - EMF Equation - Performance Char Speed - Torque Characteristics of Series and Shunt Motors - Speed Cont TRANSFORMERS ils and Principle of operation of Single Phase Transformer - EMF Equ r - Equivalent Circuit - Open Circuit and Short Circuit Test on Tran	acteris rol and uation <mark>sforme</mark>	stics, of d Appli - <mark>Phas</mark> er - Re	Series cations or Dia egulatic	and Shunt Ge 5. <mark>gram on No</mark> on and Efficie	enerators - 10 Hr Load and ency-Auto
UNIT 4	INDUCTION MOTORS (QUALITATIVE TREATMENT ONLY)					8 Hrs
Constructional Details Slip Characteristics	s of Three Phase Induction Motor - Slip Ring and Squirrel Cage Rotor- Princi - Starters - Applications Introduction to Single Phase Induction Motors	ple of - Ca	operation pacitor :	on- Tor Start (que Equation Capacitor Ru	<mark>- Torque /</mark> n Motor -
Shaded Pole Motor UNIT 5 Principles of Alternato Motor -Permanent	SYNCHRONOUS MACHINES AND SPECIAL MACHINES (QUALIT) or - Construction Details - Types Special Machines: Stepper motor- AC and E Magnet Synchronous Motor - Switched Reluctance Motor - Brushless	ATIVE)C Sei D.C	TREAT	r -Unive Cons	ONLY) ersal Motor -	9 Hrs <mark>Hysteresis</mark> rkina And
Applications.					May AF I	Jun .
COURSE OUTCOME	S				Max. 45 I	1/5.
On completion of the CO1 - Understand the CO2 -Describe the b CO3 -Understand an CO4 - Describe the w CO5 - Explain the ww CO6 - Understand th special electr TEXT / REFERENCE	course, student will be able to e basic concepts of magnetic circuits. asics of electrical machines and analyse the characteristics of DC machines d implement speed control techniques for practical applications. rorking of transformer, autotransformer and assess the regulation and efficie orking concept of single phase, three phase induction motor and analyse t the basics of alternator, synchronous machines, and special electrical machini ical machines for their applications.	hcy of he op ne and	transfor erating I have k	rmer. behavi knowlec	our ofinductio ge to choose	on motor. particular
1.B.L.Theraja & A.K. 2.J.B. Gupta, "Theor 3.R.K. Rajput, "Elect 4.S.K.Bhattacharya, 5.D.P.Kothari & I.J.N 6.Hughes "Electric	Theraja, "A Text Book of Electrical Technology, Viol II", S.Chand & Compan y and Performance of Electrical Machines", S.K.Kataria& Sons, 4 th Edition, rical Engineering" Lakshmi Publications Pvt Limited, 4 th Edition, 2008. "Electrical Machines" Tata Mc Graw Hill Company Ltd, 3 rd Edition, 2008. lagrath, "Electrical Machines", Tata Mc Graw Hill Company Ltd, 3 rd Edition, cal and Electronic Technology" Pearson Education 10 th Edition	y Ltd., 2006. 2004, 2011	, 2009. Twelfth	ı Reprir	ıt.	
	END SEMESTER EXAMINATION QUESTION PAPER PATTERN					
Max. Marks: 100 PART A: 10 Question PART B: 2 Question	ns of 2marks each-No choice is from each unit of internal choice; each carrying 16 marks				Exa	m Duration: 3 Hrs. 20 Marks 80 Marks

Insertion Deletion

SEEA1102		L	T	Р	Credits	Total Marks
	ELECTRICAL TECHNOLOGY	3	*	0	3	100

COURSE OBJECTIVES

- To understand the Electricity Standards. \geq
- To impart knowledge on analysis of Magnetic Circuit. \geq
- To study the fundamental principle of electrical machines using the concepts of electro-mechanical energy conversion. \triangleright
- To learn the principle of operation of transformers and Special Machines.

UNIT 1 INTRODUCTION TO ELECTRICAL STANDARDS

Indian Standard Electricity Rules - Domestic Wiring - Wiring Materials and Accessories - Staircase Wiring - Fluorescent Tubes - Earthing -Types of Earthing - Benefits of Earthing.

UNIT2 MAGNETIC CIRCUITS

Definition of MMF, Flux and Reluctance - Leakage Factor - Reluctances in Series and Parallel (Series and Parallel Magnetic Circuits) -Electromagnetic Induction - Fleming's Rule - Lenz's Law - Faraday's laws - statically and dynamically induced EMF - Self and mutual inductance - Analogy of Electric and Magnetic.

UNIT 3 DC GENERATORS

Construction, Principles and Working operation of DC Generators - EMF Equation - Types of Generators - Performance Characteristics of Series and Shunt Generators – Applications.

UNIT 4 DC MOTORS

Construction, Principles and Working of operation of DC Motors - Torque Equation - Back EMF - Types of DC Motors - Torque - Speed Characteristics of Series and Shunt Motors - Speed Control of DC Motors - Applications.

UNIT 5 TRANSFORMERS AND SPECIAL MACHINES (QUALITATIVE TREATMENT ONLY)

Constructional, Principle and Working of operation of Single-Phase Transformer - EMF Equation - Applications - Auto Transformer - Special Machines: Stepper motor- Permanent Stepper Motor - Variable Reluctance Stepper Motor - Servomotor - AC Servomotor - DC Servomotor – Stepper Motor Selection and Control: An Industrial Case Study.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 Understand the basic concepts of Electrical Wiring.
- CO2 Analyze the Magnetic Circuits
- CO3 Describe the basics of electrical machines and analyze the characteristics of DC Generators.
- CO4 Understand and implement speed control techniques of DC Motors for practical applications.
- CO5 Describe the working of Transformer and Autotransformer

CO6 - Understand the basics of Special Electrical Machine and have knowledge to choose particular Special Electrical Machines for desired applications. TEXT / REFERENCE BOOKS

- 1. B.L.Theraja & A.K.Theraja, "A Text Book of Electrical Technology, Viol II", S.Chand & Company Ltd., 2010.
- 2. J.B. Gupta, "Theory and Performance of Electrical Machines", S.K.Kataria& Sons, 14th Edition, 2013.
- 3. R.K. Rajput, "Electrical Engineering" Lakshmi Publications Pvt Limited, 5th Edition, 2012.
- 4. S.K.Bhattacharya, "Electrical Machines" Tata Mc Graw Hill Company Ltd, 3rd Edition, 2008.
- 5. D.P.Kothari & I.J.Nagrath, "Electrical Machines", Tata Mc Graw Hill Company Ltd, 3rd Edition, 2004, Twelfth Reprint.
- 6. Hughes "Electrical and Electronic Technology "Pearson Education 10th Edition 2011.

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100 PART A: 10 Questions of 2marks each-No choice PART B: 2 Questions from each unit of internal choice; each carrying 16 marks Exam Duration: 3 Hrs. 20 Marks 80 Marks

9 Hrs.

9 Hrs.

10 Hrs

9 Hrs.

Max. 45 Hrs.

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY

8 Hrs.

SCHOOL OF ELECTRICAL AND ELECTRONICS

B.E. / B.Tech. - Regular

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY

REGUALTIONS 2019

SCHOOL OF ELECTRICAL AND ELECTRONICS

SEE 4 24 04	L	T	Р	Credits	Total Marks
JEEAZIUI	0	0	4	2	100

COURSE OBJECTIVES

- > To Give a Introduction to Electrical machines.
- > To explain how electrical power is converted in to mechanical Power.
- > To explain how Mechanical power is converted in to Electrical Power.
- > To explain the importance of load test on the electrical machines.

SUGGESTED LIST OF EXPERIMENTS

- 1. Open circuit characteristics of separately excited dc shunt generator.
- 2. Load characteristics of self- excited dc shunt generator.
- 3. Load characteristics of dc Compound generator.
- 4. Load characteristics of dc shunt motor.
- 5. Speed control of dc shunt motor.
- 6. Load characteristics of dc series motor.

7. Open circuit and short circuit test on single phase transformer.

- 8. Load test on single phase transformer.
- 9. Brake load test on three phase squirrel cage induction motor.

10. Load test on single phase Induction motor.

- 11. Wiring circuits for
 - a. Calling bell.
 - b. Stair case.
 - c. Fluorescent lamp.
 - d. Basic household wiring using switches, fuses, Indicator lamps etc.,

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 Understand the electrical power conversion in to mechanical and vice versa.
- CO2 Find the efficiency of the electrical apparatus.
- CO3 Examine Effect of load on the electrical machines.
- CO4 Increase and decrease the Speed of the motor.
- CO5 -Construct a control mechanism for the output voltage of the generator.
- CO6 -Rule on the connection of all the meters and electrical machines to perform a test on the machines.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. mark	s: 100	Exam Duration:3 Hrs	
CAE	Evaluation of Regular Lab class	30 Marks	50 Marks
	Model practical exam	20 Marks	
ESE	University Practical exam		50 Marks

B.E. / B.Tech. - Regular

REGUALTIONS 2019

SEEA2102	ELECTRICAL ENGINEERING LAB	L	Т	Р	Credits	Total Marks
		0	0	4	2	100

COURSE OBJECTIVES

- > To give an introduction to Electrical machines.
- > To explain how electrical power is converted into mechanical Power.
- > To explain how Mechanical power is converted into Electrical Power.
- > To explain the importance of load test on the electrical machines.

SUGGESTED LIST OF EXPERIMENTS

- 1. Wiring circuits for
 - a. Calling bell.
 - b. Stair case.
 - c. Fluorescent lamp.

d. Basic household wiring using switches, fuses, Indicator - lamps etc.

- 2. Open circuit characteristics of separately excited dc shunt generator.
- 3. Load characteristics of self- excited dc shunt generator.
- 4. Load characteristics of dc Compound generator.
- 5. Load characteristics of dc shunt motor.
- 6. Speed control of dc shunt motor.
- 7. Load characteristics of dc series motor
- 8. Load test on single phase transformer

COURSE OUTCOMES

On completion of the course, student will be able to

CO1 - Understand the electrical power conversion in to mechanical and vice versa.

- CO2 Find the efficiency of the electrical apparatus.
- CO3 Examine Effect of load on the electrical machines.
- CO4 Increase and decrease the speed of the motor.
- CO5 Construct a control mechanism for the output voltage of the generator.
- CO6 Rule on the connection of all the meters and electrical machines to perform a test on the machines.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. mark	ks: 100		Exam Duration:3 Hrs
CAE	Evaluation of Regular Lab class	30 Marks	50 Marks
	Model practical exam	20 Marks	
ESE	University Practical exam		50 Marks
	Insertion		
	Deletion		